A retinoic acid receptor β agonist (CD2019) overcomes inhibition of axonal outgrowth via phosphoinositide 3-kinase signalling in the injured adult spinal cord

نویسندگان

  • Marta Agudo
  • Ping Yip
  • Meirion Davies
  • Elizabeth Bradbury
  • Patrick Doherty
  • Stephen McMahon
  • Malcolm Maden
  • Jonathan P.T. Corcoran
چکیده

After spinal cord injury in the adult mammal, axons do not normally regrow and this commonly leads to paralysis. Retinoic acid (RA) can stimulate neurite outgrowth in vitro of both the embryonic central and peripheral nervous system, via activation of the retinoic acid receptor (RAR) beta2. We show here that regions of the adult CNS, including the cerebellum and cerebral cortex, express RARbeta2. We show that when cerebellar neurons are grown in the presence of myelin-associated glycoprotein (MAG) which inhibits neurite outgrowth, RARbeta can be activated in a dose dependent manner by a RARbeta agonist (CD2019) and neurite outgrowth can occur via phosphoinositide 3-kinase (PI3K) signalling. In a model of spinal cord injury CD2019 also acts through PI3K signalling to induce axonal outgrowth of descending corticospinal fibres and promote functional recovery. Our data suggest that RARbeta agonists may be of therapeutic potential for human spinal cord injuries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Retinoic acid signaling in axonal regeneration

Following an acute central nervous system (CNS) injury, axonal regeneration and functional recovery are extremely limited. This is due to an extrinsic inhibitory growth environment and the lack of intrinsic growth competence. Retinoic acid (RA) signaling, essential in developmental dorsoventral patterning and specification of spinal motor neurons, has been shown through its receptor, the transc...

متن کامل

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Retinoic acid synthesis by NG2 expressing cells promotes a permissive environment for axonal outgrowth

Stimulation of retinoic acid (RA) mediated signalling pathways following neural injury leads to regeneration in the adult nervous system and numerous studies have shown that the specific activation of the retinoic acid receptor β (RARβ) is required for this process. Here we identify a novel mechanism by which neuronal RARβ activation results in the endogenous synthesis of RA which is released i...

متن کامل

Low-density lipoprotein receptor-related protein 1 (LRP1)-dependent cell signaling promotes axonal regeneration.

Low-density lipoprotein receptors (LRPs) are present extensively on cells outside of the nervous system and classically exert roles in lipoprotein metabolism. It has been reported recently that LRP1 activation could phosphorylate the neurotrophin receptor TrkA in PC12 cells and increase neurite outgrowth from developing cerebellar granule cells. These intriguing findings led us to explore the h...

متن کامل

Retinoic acid receptor beta2 and neurite outgrowth in the adult mouse spinal cord in vitro.

Retinoic acid, acting through the nuclear retinoic acid receptor beta2 (RARbeta2), stimulates neurite outgrowth from peripheral nervous system tissue that has the capacity to regenerate neurites, namely, embryonic and adult dorsal root ganglia. Similarly, in central nervous system tissue that can regenerate, namely, embryonic mouse spinal cord, retinoic acid also stimulates neurite outgrowth an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2010